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DATA QUALITY CONTROL / QUALITY ASSURANCE

Don Edwards

Department of Statistics, University of South Carolina, Columbia, SC 29208

Abstract.  Some basic concepts and strategies for data quality are discussed, specifically:
management philosophies; outlier detection for the purpose of elimination of data contamination;
keypunch errors; illegal data filter programs; detection of outliers in samples; and detection of
outliers and leverage points in simple linear regression.

INTRODUCTION:  PREVENTION FIRST

The importance of data quality assurance strategies to long-term ecological research cannot be
understated, yet the topic receives surprisingly little attention in the scientific literature. In the short
space allotted here, little can be done to comprehensively alleviate this lack of guidance, so one
particular issue will be focused on which is highly statistical in nature: the detection of “outliers” in
data, as an intermediate step in the elimination of contamination. Before beginning that discussion,
though, it must be emphasized that this particular issue is not the most important one to data
quality. It is, however, one that has been abused, and one, which this author is qualified to discuss.

Prevention of data contamination is clearly preferable to after-the-fact heroics, but prevention
issues are largely management issues. American industry learned the prevention lesson the hard
way in the 1960’s and 70’s, when advancements in quality science in Japan erased American
worldwide dominance in the electronics and automobile industries. Ironically, Americans Joseph
Juran and W. Edwards Deming, sent to Japan after World War II to help reconstruction, played
huge roles in the Japanese coup. As for the relative importance of prevention, no one has expressed
it more succinctly than the ever-acidic Deming: “Let’s make toast the American industry way - you
burn, I’ll scrape.”

Many management strategies for data quality assurance in scientific settings could be
borrowed from industrial quality science. For example, Flournoy and Hearne (1990), in a cancer
research center, stress the importance in a multi-user database setting that all users and data
contributors have a stake in data quality. In fact, this is also one of Deming’s (1986) foundational
principles: all company employees, from upper level management (i.e., principal investigators) to
line workers (i.e., data entry technicians), must feel a responsibility for, and a pride in, product
(i.e., database) quality. Of course, the real challenge lies in inspiring this universal motivation.
Along these lines, another surprising Deming principle is that no worker should ever be penalized
for poor quality, as poor quality is usually the result of a poorly designed manufacturing (i.e., data
collection) process; punishment is unfair and destroys worker-management (i.e., technician-
scientist) trust. A successful organizational structure promoted by Deming, which could be adopted
immediately for database quality assurance, is the use of “quality circles”: these would be regular
(e.g., weekly) meetings of scientists, field technicians, systems specialists, and data entry personnel
for the purpose of discussing data quality problems and issues. These brief regular meetings build
teamwork-attitudes while focusing brain power on data quality issues; participants become
constantly aware of quality issues and learn to anticipate problems. Not surprisingly, some of the
best ideas come from the lowest-ranking members of the circle!

Incidentally, another of Deming’s principles is that everyone, from upper-level management to
line workers, should have a basic understanding of natural variability and simple statistical
methods for dealing with it. It has been said that one can stop a Japanese at random on the street,
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and he/she will know the meaning of “standard deviation”. In America, asking that question to a
random passerby is likely to result in a less desirable outcome!

OUTLIER DETECTION PHILOSOPHY

The term “outlier” is not formally defined. An outlier is simply an unusually extreme value for
a variable, given the statistical model in use. What is meant by “unusually extreme” is a matter of
opinion, but the operative word here is “unusual”; some extremes are to be expected in any data
set. It must also be emphasized, and will be demonstrated, that the “outlier” notion is model-
specific: a particular value for a variable might be highly unusual under, say, a linear regression
model, but not unusual at all in a model without the regressor. So, outlier detection is part of the
process of checking the statistical model assumptions, a process that should be integral to any
formal data analysis.

“Elimination of outliers” should not be a goal of data quality assurance. Many ecological
phenomena naturally produce extreme values, and to eliminate these values simply because they
are extreme is tantamount to pretending that the phenomenon is “well-behaved” when it is not. To
mindlessly or automatically do so is to study a phenomenon other than the one of interest. The
elimination of data contamination is the appropriate phrasing of this data quality assurance goal.
Data contamination occurs when a process or phenomenon other than the one of interest affects a
variable’s value. If this contamination is undetectable at observation time, it can usually only be
detected if it produces an outlying value. Hence, the detection of outliers is an intermediate step in
the elimination of contamination. Once the outlier is detected, attempts should be made to
determine if some contamination is responsible. This would be a very labor-intensive, expensive
step if outliers were not by definition rare. Note also that the investigation of outliers can in some
instances be more rewarding than the analysis of the “clean” data: the discovery of penicillin, for
example, was the result of a contaminated experiment. If no explanations for a severe outlier can
be found, one approach is to formally analyze the data both with and without the outlier(s) and see
if conclusions are qualitatively different.

DATA ENTRY ERRORS AND ILLEGAL DATA CHECKS

Sources of contamination due to data entry errors can be eliminated or greatly reduced in
several ways. One excellent strategy is to have the data independently keyed by two data entry
technicians, and then computer-verified for agreement. This practice is commonplace in
professional data entry services, and in some service industries such as the insurance industry
(Lepage 1990). Sadly, scientific budgets for data entry are usually inadequate to allow for double-
keying of data, though other means of detecting keypunch errors are less effective and probably
more expensive since they involve higher-paid personnel.

Illegal data are variable values or combinations of values that are literally impossible for the
actual phenomenon of interest. For example, non-integer values for a count variable (e.g., the
number of flowers on a plant) or values outside of the interval [0,1] for a proportion variable
would be illegal values. Illegal combinations occur when natural relationships among variable
values are violated, e.g., if Y1 is the age of a banded bird in last year’s census, and Y2 is the same
bird’s age in this year’s census, then Y1 had better be less than Y2. These kinds of illegal data often
occur as data entry errors, but also for other reasons, e.g., misreading of gauges or miswriting of
observations in the field or laboratory due to fatigue.

A simple and widely-used technique for detecting these kinds of contamination is an illegal
data filter (or “rules,” see Henshaw, Bierlmaier, and Hammond, this volume). This is a program
which simply checks a laundry-list of variable value constraints on the master data set (or on an
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update to be added to the master) and creates an output data set including an entry for each
violation with identifying information and a message explaining the violation. Table 1 shows the
structure of such a program, written in the SASTM language (SAS 1990). The filter program can be
updated and enhanced to detect new types of illegal data that may have been unanticipated early in
the study. A word of caution, however: the operative word here is “illegal”. Simply because one
has never observed, say, an ozone concentration below a given threshold, and can’t imagine it ever
happening, does not make such an observation an illegal data point. One of the most famous data
QA/QC blunders occurred when NASA computers were programmed to delete satellite
observations of ozone concentrations below a specified level, and thus failed to discover the “ozone
hole” over the south pole (Stolarski et al. 1986).

Table 1.  An illegal-data filter, written in SAS (the data set “All” exists prior to this DATA step,
containing the data to be filtered, variable names Y1, Y2, etc., and an observation identifier
variable ID).

Data Checkum; Set All;
      message=repeat(“ “,39);
      If Y1<0 or Y1>1 then do; message=“Y1 is not on the interval [0,1]”;  output; end;
      If Floor(Y2) NE Y2 then do; message=“Y2 is not an integer”; output; end;
      If Y3>Y4 then do; message=“Y3 is larger than Y4”; output; end;
      :
      (add as many such statements as desired… )
      :
      If message NE repeat(“ “,39);
      keep ID message;
Proc Print Data=Checkum;

OUTLIERS IN SAMPLES: GRUBBS’ TEST

One of the oldest and most widely used procedures for detecting contamination in samples is
Grubbs’ test (Grubbs and Beck 1972,  ASTM E 1994). By “samples” we mean that, if the data are
uncontaminated, we would have several (say, n) independent observations on the variable from the
same repeatable, well-defined, stable experimental process. Grubbs’ test assumes that the
uncontaminated process produces data which follow a Normal (or Gaussian) distribution, and it is
very sensitive to that assumption; if the “clean” data are grossly non-Normally distributed, one
should not use Grubbs’ test. In fact, to this author’s knowledge, every formal outlier detection rule
/ test has the serious drawback that it makes a distributional assumption and is sensitive to that
assumption. This is not the case for all statistical procedures that nominally assume Normality; for
example, t-tests are typically robust to this assumption.

Grubbs’ test is performed as follows: let Y1<Y2<...Yn denote the ordered sample values, and Y
and S the sample mean and standard deviation, respectively. If it is only of interest to detect
unusually large outliers, then compare the test statistic

T Y Y Sn n= −( ) /
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to the appropriate tabled one-sided critical point (Grubbs and Beck 1972, ASTM E 1994), which
depends on n and an error rate which we will call αG. If it is only of interest to detect unusually
small outliers, compare the test statistic

T Y Y S1 1= −( ) /
to the appropriate one-sided critical point. If either large or small outliers are to be detected,
compare the larger of Tn and T1 to the two-sided critical point.

The probability αG is in this case a per-sample error rate. So, for example, if αG is chosen to
be .05, then in 5% (1 in twenty) of repeated uncontaminated samples of this size, we would falsely
declare a contamination to exist. Users are encouraged to choose αG thoughtfully, as it has a
different meaning than the “α-level” one uses in testing research hypotheses. What fraction of the
clean data are you willing to lose, or at the very least investigate, for the sake of detecting possible
contamination? Bear in mind that if such contamination is really severe, it would be detected using
a smaller aG, as well. ASTM E (1990) recommends a “low significance level, such as 1%”. It
should also be noted that Grubbs’ test cannot be done at all for n=2, and for n=3 the critical points
do not differ for choices of (two-sided) αG less than .05.

As an example of the (mis-)application of Grubbs’ test, consider the seeded-cloud rainfall data
of Simpson and colleagues (1975) shown in Table 2. The mean and standard deviation for these
data are Y =442 and S = 651. With n = 26 and αG=.01, the one-sided critical point for Grubbs’ test
is 3.029, and the test statistic for detecting large outliers is T26=(2745.6 - 442)/651 = 3.539, hence
(if being careless) we would assert contamination.

Table 2. Rainfall in acre-feet from seeded clouds (Simpson et al. 1975).

4.1 7.7 17.5 31.4 32.7 40.6 92.4 115.3 118.3
119.0 129.6 198.6 200.7 242.5 255.0 274.7 274.7 302.8
334.1 430.0 489.1 703.4 978.0 1656.0 1697.8 2745.6

Of course, the assumption that the uncontaminated sample follows a Normal distribution is
grossly violated here; Figures 1a and 1b show a histogram and Normal probability plot for the raw
data, which clearly show that the sample as a whole follows a severely right-skewed distribution
(readers unfamiliar with Normal probability plots can find discussion of them in many modern
intermediate statistics texts, e.g., Chambers et al. 1983, Sokal and Rohlf 1981). Figures 1c and 1d
show a histogram and Normal plot for the log10-transformed rainfall data. Clearly, these rainfall
data are very nearly log-Normally distributed, and there is no evidence of contamination.

OUTLIERS AND INFLUENTIAL POINTS IN REGRESSION

As an example of outlier detection in a multivariable setting, consider the data on 63 species of
terrestrial mammals shown in Figure 2, from Allison and Ciccheti (1976). In any study comparing
brain weights of animal species, some correction should be made for body weight. One approach to
doing this would be to regress brain weight Y on body weight X in some way, and use residuals.
Of course, data in a simple linear regression analysis comes in pairs (X1,Y1), (X2,Y2), ..., (Xn,Yn).
A particular pair can be unusual in at least two ways: Its X-value can be unusually extreme, in
which case the pair is referred to as a “leverage point”, and/or its Y-value can be unusually
extreme relative to the regression line, in which case the point is labeled an outlier. Diagnostics
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have been defined to measure / detect each of these conditions (Belsley et al. 1980). For example,
the leverage of the ith point is defined to be

h n X X n Si i X= + − −( / ) ( ) / ( )1 12 2

i=1,2,...,n, where X  and SX
2  are the mean and variance of the regressor. The average value of

Figure 1. Distributional checks of data on rainfall from seeded clouds (Simpson et al. 1975).
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these hi values in simple linear regression is 2/n, and the ith data point is (under some conventions)
labeled a “leverage point” if hi > 4/n. Some authors prefer a more stringent cutoff value, 6/n. At
any rate, leverage points are not necessarily bad; they are just more influential in determining the
regression line than the other data points. In the regression shown in Figure 2, both the Asian
Elephant (h=.1279) and African Elephant (h=.8612) are leverage points.

Outliers in regression can be detected by means of studentized residuals. Several varieties
have been defined, but the so-called externally studentized residual is recommended:

r e MSE hi i i i= −−/ ( )( ) 1

where ei is the ith ordinary residual (actual Yi - predicted Yi) and MSE(-i) is the error mean square
for the regression excluding the ith pair. Both studentized residuals and leverage points can be
obtained (for example) from SAS’ PROC REG by requesting their creation in an output data set
(SAS 1990).

If the formal assumptions of the regression analysis hold, studentized residuals can be used to
test for contamination, since each ri follows a Student’s t-distribution with (n-3) degrees of freedom
under the hypothesis of no contamination. Hence, a two-sided test would assert contamination if |ri|
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> tα/2,n-3 , the upper-α/2 critical point from the t distribution with n-3 degrees of freedom. In this
case, α is a per-observation error rate, and should again usually be set lower

Figure 2. Brain weights and body weights of 63 species of terrestrial mammals (Allison and
Cicchetti 1976).
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than .05. For example, in a perfectly “clean” data set containing 100 points, we expect 5
studentized residuals to exceed the α=.05 critical value, and 1 to exceed the α=.01 value, purely by
accident. No guidelines have been suggested in the literature, but α ≅ 1/2n appeals to this author.
For the data shown in Figure 2, using α = .01, the critical point is t.005,59 = 2.657 and both of the
elephants (r= 12.30 and -11.85) and also Man (r=3.95) flunk the outlier test.

These outlier tests are only valid if the assumptions of the regression hold, however. These
assumptions, verbally stated, are:
• The values of the regressor X are known constants (measured with negligible error).
• At any fixed X, the long-run mean of many Y-values, say m(X), is a linear function of X.
• The regression “errors” (the deviations of repeated Y-values at a given X from their long-run

mean m(X)) are Normally distributed, with constant variance, and are independent.
In the data of Figure 2, several of these assumptions are either questionable or difficult to assess.
Linearity cannot be verified for body weights beyond 1000 kg, since there are so few points at
these values. Constant error variance probably doesn’t hold, with so many points packed into the
lower left hand corner of the plot.
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These data vary over several orders of magnitude in both variables, and no analysis of the raw data
will distinguish between the lower orders of magnitude. As long as there are elephants in the data,
the baboons, lemurs and field mice will all seem equal in size (will all seem to be 0, actually),
unless the analysis is done on an order-of-magnitude scale: the log scale. Figure 3 shows a plot of
this data in the log scale, i.e. Y*=log10(brain wt) versus X*=log10(body weight).

Figure 3. Log10-transformed brain and body weights.
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When checked carefully, the formal assumptions of the regression appear to be reasonable,
with the possible exception of some points whose Y* values do not fit the pattern (i.e. possible
outliers). There are no leverage points now, but the point at lower right in Figure 3, labeled simply
as “mispunched point”, is a severe outlier since its studentized residual value is r*= -7.56. The
point was in fact artificially planted in this data for the purposes of demonstrating a point, but it is
also present (but undetectable) in the raw data of Figure 2. It is also undetectable using univariate
outlier tests such as Grubbs’ test, since both its X and Y-values are separately well within the
range of other values found in the data. This point is the promised example of a model-dependent
outlier.

Upon removal of the mispunch and reanalysis, two other points in this data set emerge as
possible outliers. Man (r* = 2.670) barely signals using α=.01, but the Chinchilla’s brain weight
(r* = 3.785) is highly unusual given its body weight.
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CONCLUSIONS

Some discussion has been offered concerning the prevention and detection of contamination in
samples and in regression. Grubbs’ test can be adapted to the setting of repeated small samples, as
would often be the case in water quality studies, by using a pooled variance estimator over several
samples. There are also different versions of the test if one suspects more than one outlier in the
sample. Also not discussed is the case of instrument miscalibration, which would result in a
possibly large number of “outliers”, which are actually shifted variable values, usually by an
additive and/or multiplicative constant. Finally, no discussion of modern “robust” statistical
methods such as Iteratively Reweighted Least Squares (IRLS) algorithms has been offered (see,
e.g., Little 1990). These could, in some cases, be considered to be automatic outlier-detection
algorithms; they are potentially very useful, but are still under development. Also, the danger of
mindless dependency on automatic detection / elimination algorithms is worrisome.
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