
71

WEB-BASED DATA MANAGEMENT

Matthew B. Jones

National Center for Ecological Analysis and Synthesis, 735 State St., Suite 300,
Santa Barbara, CA 93101

Abstract. Data management techniques for integrating World Wide Web (web) publishing with
data storage systems are important in furthering innovative and powerful insights in ecology,
mainly through improved data exchange and collaboration. This chapter discusses the benefits
and disadvantages of using the web for data management applications, and describes four
categories of technological solutions that can be employed to integrate database systems with web
distribution.

INTRODUCTION

Data management practices at the National Center for Ecological Analysis and Synthesis
(NCEAS; http://www.nceas.ucsb.edu) are used to promote our mission of “advancing the state of
ecological knowledge.” Many projects at NCEAS involve the acquisition, synthesis, and analysis
of data from multiple, distributed data sources, as well as remote collaboration on projects before
and after events are convened physically at NCEAS. Several other ecological groups have
verified the need for remote access to large and long-term ecological data sets (Gross et al. 1995,
Michener et al. 1997). To promote the widespread sharing of ecological data, and to improve
remote collaboration activities among our research scientists, NCEAS has researched, developed
and is implementing a variety of techniques for managing data using the World Wide Web.

Objectives of this chapter are to: 1) present an overview of the costs and benefits of
developing and using web-based tools for data management; 2) examine several common
technical approaches to integrating databases with web access; and, 3) conclude with some
implementation guidelines that have proved useful in systems developed at NCEAS.

BENEFITS AND DISADVANTAGES

The relative merit of using the web for data management applications can be distilled to a
tradeoff between the portability and accessibility of Internet-deployed applications versus the
potential costs of developing and maintaining web services at a site (Table 1). Web-based
applications generally work across all computing platforms in an organization, either through a
common web browser client, or through Java® applets. Both of these approaches can be deployed
locally at a site, or they can be made accessible over the Internet for the broader community to
access. In addition, using the web as the client interface for data management tools allows
developers greater flexibility in their choice of scalable database solutions deployed on the server
because interface considerations are divorced from storage and application logic needs. This
separation of interface from application logic and data storage also permits application developers
to migrate to new and improved technologies on the server as they become available without any
change in the client-side interface that the user experiences. Finally, using the web for data
management affords the obvious advantages of easing the process of sharing and distributing data
with collaborators, the general public, and archive centers.

Although there are clear benefits to using the web for data management applications, several
potential disadvantages also exist. First, the web is a relatively new and immature technology,
and so the development tools available for creating web applications are, compared to other
development areas, feature-poor and difficult to use. For example, the types of Rapid Application
Development (RAD) tools available to C/C++ programmers are just beginning to emerge for web

72

and Java® based development. Another facet of the technology's immaturity is reflected in the
simplicity of the interfaces that one can build using HTML forms. Developers are limited to a
small set of graphical widgets for use in presenting a user interface. Finally, like other complex
technologies, web-based applications can require a high investment in software, as well as
maintenance costs for the software and personnel for software administration.

Table 1. Costs and benefits of web-based data management.

 Benefits Costs

Cross-platform interfaces Potentially high development and
training time

Internet deployable Potentially high software investment
Scalable database backend Maintenance costs
Independent interface allows database
migration Interface simplicity / immaturity

Easier data sharing, interchange, and
archive

APPLICATIONS

The uses of web-based solutions in ecological data management are many and varied. One of
the most obvious is to use the web as a mechanism for the distribution of existing data sets and
their associated metadata. However, one can also use interactive web applications to create data
entry forms for the collection of metadata and data, and to query and retrieve metadata. Data
stored in a database can be converted to structured markup languages for interchange of data
(e.g., XML) and for data presentation (e.g., HTML). Sophisticated query and visualization tools
can be developed that give users a mechanism to remotely query data, find the subset that
interests them, and then perform remote processing operations on those data. Remote processing
functionality that is of interest to users includes quality control processing, data subsetting and
aggregation, generation of descriptive and summary statistics, and generation of graphics for data
visualization. Providing these simple analytic and visualization tools via a cross-platform, simple
interface like the web empowers users to explore and use data that otherwise might be
inaccessible.

WEB-DATABASE INTEGRATION TECHNIQUES

Overview

A wide variety of techniques exist for implementing the communication and data transfer
mechanisms between web servers and data storage systems. The web is a client/server paradigm,
so there is a tension between centralization of functionality at the server and distribution of
functionality to clients. The most prevalent software solutions today do essentially all processing
on the server side, and leave the clients with user interaction and display of information.
However, recent advances in programming technologies (i.e., Java®) have blurred the roles of the
client and server and promise to permit more advanced processing on client computers in a
portable fashion. Although a number of platform or operating-system specific solutions exist, I
have concentrated here on technologies that can be implemented cross-platform because the web
was designed as a platform-neutral communication mechanism.

73

The techniques for web integration that are commonly employed can be broken into four
general classes: 1) ASCII-oriented solutions; 2) Template parsing solutions; 3) Transaction
monitor (middleware) solutions; and, 4) Java® applet solutions. The following sections will
outline the basic features and benefits of each approach. Portability, scalability, ease of
deployment, interface maturity and flexibility, cost, and client-processing capability are all
considerations in evaluating the appropriateness of each technique for a particular application.

ASCII-oriented solutions

The widespread adoption of the ASCII standard as a universal character set has obvious
advantages in terms of cross-platform portability and ease of deployment. The simplest case of
web-based access to a data store, and one used as a foundation in many of the other techniques, is
the delivery of static text documents from server to client over the Hypertext Transfer Protocol
(HTTP). Web browsers (i.e., HTTP clients) are generally built to interpret and format the special
type of ASCII documents known as HTML (Hypertext Markup Language) documents, but can in
fact receive any type of data using this transport mechanism. To increase control over how data
are delivered, many implementations add a processing script as an intermediary between data
files and web server delivery of those files, making the process dynamic. The processing script
can perform a number of tasks, including query processing, generation of formatting information
like HTML code, data aggregation, etc. The script that executes often works by examining an
ASCII text file that contains the data to be searched or processed. After determining which data
are appropriate, the script formats the information and returns them to the web server. These
processing scripts generally conform to the Common Gateway Interface (CGI), a standard that
defines the mechanisms by which a web server can execute and communicate with processing
scripts (Gundavaram 1996). CGI scripts can be written in most languages, including perl
(common on UNIX), C™ , C++™ , Visual Basic™ , and many others. CGI is simple to implement,
inexpensive, and fairly easy to maintain, but generally does not scale well as the transaction load
increases. In addition, the user interface elements available through the HTML "forms"
specification are sometimes limiting, as is the lack of client side processing when CGI is used on
the server.

Figure 1 illustrates the architecture of typical client/server transactions involved in delivering
data via the web and CGI mechanisms. A web client requests, either via a URL or an HTML
form, a set of data from the web server (solid arrow). The web server finds the requested file itself
from the filesystem and returns it to the client (dashed arrow), or it executes a script, passing
query information to the script via the CGI mechanism. The script executes and retrieves
information from the filesystem according to the query parameters it received from CGI. When
processing completes, the script sends the data (usually formatted in HTML) back to the
webserver via CGI, and the webserver in turn sends the data back to the client that first made the
request. This is a 2-tier client server solution, as the client and server generally reside on two
different hosts.

74

Figure 1. Architecture of CGI text processing solutions.

Template parsing systems

To improve access to database systems, several vendors have created systems for directly
embedding database specific commands into HTML and other text files. A vendor-supplied
program parses the HTML file and extracts the embedded commands, sending a database query
to a database management system. The results that are returned from the query are interspersed in
the HTML file according to formatting instructions, and the dynamically generated results are
returned to the web server, which sends them to the client. This mechanism is similar to the
ASCII database solutions described above, except that a proprietary language is used to embed
commands in the HTML file that drives the query and formatting processor. Also, template
parsing systems generally connect to relational database systems, and therefore they have the
advantage of simplifying database integration. They are easy and powerful mechanisms for
accessing a database, but generally lack scalability, don't contain the procedural functionality of
more generic programming languages, and still are limited by HTML form interface elements and
a lack of client-side processing. Examples of these systems include Allaire's Cold Fusion® and
Microsoft's Internet Information Server® / SQL Server® combination; the Allaire product has the
advantage of working with any Open Database Connectivity (ODBC®) compliant database -- a
database interoperability standard -- and any CGI compliant web server, rather than being limited
to specific products.

The architecture of template parsing systems (Figure 2) is similar to CGI / ASCII database
systems. Again, a web client requests information and the web server passes the information via
CGI to the template parsing program. The template parser retrieves the HTML template with
embedded database commands, parses out the commands, and then makes a database connection
(often ODBC) in order to execute those commands. The query results returned from the database
are formatted by the parsing program and returned to the web server, which returns the
dynamically generated document to the client.

75

Figure 2. Architecture of template parsing systems.

Transaction monitor systems

A further extension of these concepts arises in the class of solutions called Transaction
Monitor (TM) Systems (sometimes called “middleware”). Transaction Monitor software usually
implements a 3-tier architecture where the client and database each reside on different systems
than the transaction monitor, and the transaction monitor plays the role of mediating transactions
between the requesting client and one or more data providers that can be distributed across
multiple other hosts. This architecture is extremely flexible and scalable because it allows many
backend database systems, each potentially running different database software, to participate in a
transaction over the web. In addition, the transaction monitor can actively poll the available
server systems and determine which has the most available processing resources, thereby
increasing performance and distributing computational load across the server database systems.
Examples of systems that can implement a transaction monitor system include Oracle's Web
System®, and Microsoft's Transaction Server®.

An example transaction monitoring architecture is illustrated in Figure 3. As usual, a web
client makes a connection using HTTP to a server, which then launches the transaction
monitoring (TM) software. The gateway between these systems can be CGI, but more often it is a
proprietary interface that maximizes performance. The TM system then distributes query requests
to one or more relational database systems on the same or different hosts (n-tier). Again, the
gateway between the TM system and database systems are generally high-performance,
proprietary drivers provided by the TM system. In addition, the database systems themselves
often store the application logic and formatting instructions in stored procedures, rather than
having to parse text transmitted via the web server gateway (e.g., CGI).

76

Figure 3. Architecture of transaction monitor systems.

Integration using Java® and JDBC®

The Java® programming language has a library called "Java Database Connectivity®"
(JDBC), which provides a platform and database independent programming interface to access
multiple distributed databases of varying types. In using this system for integrating databases with
web sites, one develops Java® applets that are delivered over a web connection (HTTP), and then
the applets execute on the client machines. This mechanism is by far the most flexible because it
allows the programmer to design an n-tier database system with connections to many database
systems, all without specialized, expensive middleware software. Because the applet runs on the
client machine, it allows full freedom in client side processing for field validation and interface
fine-tuning. There are two principal disadvantages: Java® is a lower level language than others
described here and therefore is substantially more complicated to use for interface development;
and Java's performance is still much lower than many natively compiled interface-building
systems. However, for most interface activities, performance is not particularly demanding and
Java® will usually allow more responsive interfaces than HTML does. Other systems like
Microsoft's ActiveX can be used to implement similar systems, but they lack the basic advantage
of all of the systems described here: interoperability across virtually any operating system. Java®
applets are employed in this way in several commercial systems, including SAS' Intr*Net®
product and many middleware systems such as Symantec's dbAnywhere®. JDBC® drivers exist
for most major database systems, including Oracle®, Sybase®, SQL Server®, and others.

A typical architecture for using Java® and JDBC starts with a web client requesting an
HTML page that has an embedded Java® applet (Figure 4). The web server delivers the applet to
the requesting client (a potentially time-consuming process), and then the client executes the
Java® applet, ending the interaction with the web server. The Java® applet uses JDBC calls to
open up separate TCP connections to one or more relational database systems, independent of the
web server. It then communicates with these database systems using JDBC calls to query and
update data, while displaying the results in a custom developed user interface. This type of
mechanism allows substantially more flexibility in implementation than any of the other systems,

77

at the cost of development time. The complexity of designing application logic for a Java® applet
to manage one or more database connections and an easy-to-use interface should not be
underestimated, but neither should its potential power.

Figure 4. Schematic of a Java®/JDBC architecture.

CONCLUSIONS

The variety of mechanisms described here allow everything from simple, easily implemented
web-database communication to high end, scalable solutions for critical applications. The
categorization that I developed was a means of simplifying a continuum of overlapping, non-
exclusive technological solutions, and should be interpreted as such. For example, many
transaction monitor systems may use CGI gateways, and Java® solutions may make more HTTP
connections than indicated. Nevertheless, the basic features of those systems are used as
indicated.

When designing a mechanism for web-database integration, one must weigh the relative
strengths and weaknesses of the different approaches outlined above for a particular application.
If the application is relatively local in scope and small in scale, it will probably be simplest to use
the CGI-based ASCII approaches. For more complex applications, and for applications where
scale and performance are critical, some of the more complex approaches outlined here, such as
transaction monitor systems, may be appropriate. Finally, where substantial control of processing
on the client computer is needed, and where portability across computing platforms is important,
custom-designed Java® applications and applets become beneficial choices.

In implementing and researching these solutions, I have found a number of general guidelines
useful to keep in mind across all of the systems. First, as soon as one attaches a computer to a
network, and especially when one provides access to data over the Internet, security concerns
arise. Writing both CGI scripts (in any language) and Java® programs has inherent risks; one
must carefully examine the mechanisms by which user input is validated and checked before it is
used to execute programs on the server system, or you may inadvertently grant full access to a
database or operating system (see Garfinkel 1997). Second, although some aspects of web-

78

database integration seem simple, full scale integration is much more difficult to design and
implement; conservatism in estimates of development time help to make projects successful.
Designing a modular system in which each module has utility before the entire system is
completed can help in this regard, as well as making it easier to upgrade modules as new
technologies arise. Third, all of these mechanisms for integration allow a clean separation of user-
interface from data storage; by designing your applications this way you can upgrade backend
storage systems when the need arises without impacting the user's method of interacting with
data.

In the end, these technologies are only useful to ecological data managers when they improve
the quality of science in the discipline or open up new areas for research. At NCEAS we hope
that the integration and synthesis of data will allow new insights into the structure and function of
ecological and evolutionary systems. Our development of data management technologies is
guided by our need to synthesize data from multiple sites, or data arriving in many formats, as
well as a desire to exchange data with colleagues. This paper represents a synthesis of
technological solutions that ecological data managers may find useful in their own efforts.

ACKNOWLEDGMENTS

The ideas in this paper were substantially improved through discussions with Mark
Schildhauer. This work was funded by the National Center for Ecological Analysis and Synthesis,
a Center funded by the National Science Foundation (Grant #DEB-94-21535), the University of
California - Santa Barbara, and the State of California.

LITERATURE CITED

Garfinkel, S. and G. Spafford. 1997. Web Security & Commerce. 1st Edition. O'Reilly and
Associates, Cambridge, MA.

Gross, K.L., C.E. Pake, E. Allen, C. Bledsoe, R. Colwell, P. Dayton, M. Dethier, J. Helly, R.
Holt, N. Morin, W. Michener, S.T.A. Pickett, and S. Stafford. 1995. Final report of the
Ecological Society of America Committee on the Future of Long-term Ecological Data
(FLED). Volume I: Text of the report.

Gundavaram, S. 1996. CGI Programming on the World Wide Web. 1st Edition. O'Reilly and
Associates. Michener, W.K., J.W. Brunt, J. Helly, T.B. Kirchner, and S.G. Stafford. Non-
geospatial metadata for the ecological sciences. Ecological Applications 7:330-342.

